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APPROXIMATE OPTIMAL ATMOSPHERIC ENTRY TRAJECTORIES
	 J

Jason L. Speyer and M. Edward Womble
Charles Stark Draper Laboratory, M.I.T.

Cambridge, Massachusetts

Abstract
For a re-entry glider, approximate solutions are found in closed form

for the problem of maximizing a function of the terminal velocity, altitude,
flight path angle and heading angle subject to, at most, three terminal
nonlirear constraints. The results given here extend the predious results
in two important ways:

1. The second order approximation of the entry dynamics of Loh is used
instead of the first order approximation of Allen and Eggers. This
approximation is found to compare extremely well with an exact
numerical optimal path.

2. A three dimensional optimization problem is solved which includes
Loh's second order approximation where the roll angle as well as
the lift coefficient are determined subject to constraints which include
the terminal heading angle. Furthermore, closed form solutions can
also be obtained subject to inflight constraints on the lift coefficient
and roll angle.

This work was supported by t+ASA under contract NAS9-10268.
Staff
Graduate Student, research assistant.

The authors would like to thank Ted Edelbaum for many interesting
discussions about Loh's work and Michel Froidevaux for his comments on
the out-of-plane motion. Part of this work was done by the first author
while a consultant a. l,avtheon Co.
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I, Introduction

The problem of optimum lift, drag and roll angle control of a hypersonic
lifting body during re-entry is so difficult that most available solutions
are numerical. I The available analytic solutions of the re-entry equations
(no optimization) are quite restrictive being derived under such assumptions
as constant lift-to-drag ratio or constant lift and constant drag coefficients.
Recently, analytic solutions were obtained for optimal re-entry maneuvers
which extremize ,-) function of the terminal attitude, velocity and flight path
angle with constraints on any two terminal states. 2,3 These analytic solutions
are important because they allow insight into the structure of the optimal
control policy and may form the basis for the solution of the guidance
problem. The region of validity of the results of Refs. 2 and 3 are greatly
extended here and the analytical results are shown to compare favorably
with previous numerical solutions. The performance index of most practical
concern for which these analytical results apply is that of minimizing total
energy loss. This allows efficient energy management for maneuvers -
i.e., reversing the heading angle of a shuttle type vehicle so as to be left
with sufficient energy to reach a desired landing site. However, this analysis
is applicable to a general class of entry problems where nonlinear functions
of the terminal state variables characterize both the performance index
and constraints.

Busemann, Vinh and Kelley  were able to obtain analytical solutions
to an optimal re-entry problem in two dimensions by assuming that the
aerodynamic forces greatly exceed the gravity force and centrifugal force.
By using the flight path angle as the independent variable and by making a
clever transformation on the remaining state variables, the motion equations
are found to be an explicit function of only the control variable (lift coefficient
X) and the flight path angle Y. Under these circumstances, the Lagrange
multipliers are constants along the motion. Furthermore, the functional
form of the extremizing 2ontrol variable (for a parabolic lift-drag polar)
is simply

X = (1 + p 2 sin Y) 1/2	 (1)

where the constant p 2 is found by satisfying the terminal altitude constraint

6
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at a given terminal y. This necessitates solving an equation involving elliptic
integrals. However, if Y is assumed small, the integrals can be evaluated
inclosed form. Shi a extends these results by using the method of matched
asymptotic expansions to join the Keplerian region to the region valid for
the approximation of Allen and Egger.

These results can be extended without any further assumptions (flat
Earth is already assumed) to include the heading angle. This out-of-plane
motion is obtained by roiling the vehicle about the velocity vector. In an
extended Busemann state space, the vehicle motion depends only on explicit
functions of N, the roll angle u, and Y; therefore the Lagrange multipliers
again are constants along the -notion. The functional form of the extremizing
roll angle (consistant with a parabolic polar) is

sinµ = p l /2 cosyX	 (2)

where X is given by (1) and the constant p 1 is found by satisfying the terminal
heading angle constraint at a given terminal Y. Both p l and 0 2 are found
by satisfying two equations involving elliptic integrals simultaneously. If
Y is assumed small, closed form solutions are obtained.

The Allen and Eggers 4 approximation seems to be valid for high
aerodynamic force regions or regions where the flight-path angle is small
and the lift-to-drag ratio large and positive. 5 For the two dimensional
problem, Loh 5 is able to find valid analytical soutions in a region far larger
than that of Ref. 4 by including a second order correction term. This
second order term includes some of the affects of gravity and centrifugal
force on the trajectory and is included here to extend Busemann's analytic
solution (i.e., equations (1) and (2)) to a much wider region of validity for
both the two and three dimensional cases. Interestingly the form of the
roll angle given in (2) is quite general. However, the form of X is considerably
changed from that of (1). Nevertheless, for small Y closed form solutions
can be obtained. For the two dimensional case, this approximation is found
to compare quite favorably with a numerically obtained optimum path.

At present only in-flight constraints can be directly imposed upon
(X,µ) if the bounds are constants. This is because along a control variable
constraint boundary the Lagrange multipliers still remain constants of the

3



motion. Although along a roll angle boundary the form of X is similar to
(1), along a X boundary the form of µ is quite different especially if Loh's
second-order term is included.

II. Equations of Motion

The equations of motion in 3-dimensions for a point mass over a
spherical non-rotating Earth are

b = V cos Y cos ^/(R 0 + h) sin H	 (3)

^ = V sin 0 cos Y ( R 0 + h)	 (4)

h = V sin Y	 (5)

90 R2V= D - 	 2 sin y	 (6)
M ( R 0 + h)

L jj	
x2

Y = 
MVµ 

+ \R + h - 
ĝ 0 ^1 cos 

Y	 (7)
0 +	 (R0 + h) J

W= L sing _	 V	
cos Y sin ^- ctn 9	 (8)

rrV cosy	 R0+h

r

	

	 The coordinate system is illustrated in Fig. 1 where 8 is the down range
	 a

angle, 9 is the cross range ,angle, V is the velocity magnitude, h is the
altitude, Y is the flight path angle, 0 is the heading angle, µ is the roll angle,
R0 is radius of the Earth, m i.s the vehicle mass, g 0 is the gravitational
acceleration at sea level, and L and D are the lift and drag forces riven as

L = p V 2S CL /2	 (9)

D = pV 2S CD /2	 (10)

where S is the surface area, p is the density assumed to be exponential	 =_

as

G	 4
f
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P = P O e -h/p	 (11)

where PO is the density at sea level and r, is the scale height. The drag
coefficient C D is as sum ed to be only functional related to the lift coefficient
C L , the control variable.

III. Approx im ation of Equations of Motion

In the first order approximation of Allen and Eggers 4 , the assumption
that the aerodynamics forces are dominant is equivalent to considering a
flat earth with no gravity force. However, in certain regions of interest
large errors may occur, Loh's 5 second order approximation includes some
of the effects of the centrifugal (spherical Earth) and gravitational forces
in an attempt to expand the region of validity of the approximation of Ref.
4. Let us rewrite (7) as

dY - 	
C L S cos µ

dt	 2m

where

M = L1 - g O R2/V 2 (R O + h)] cos Y/P (R O + h)	 (13)

Loh accounts for the gravity and centrifugal force in the Y equation by
observing from numerical simulations that M is insensitive to integration
with respect to P or Y and thereby can be treated as a constant (the Busemann
scheme, to be described subsequently, uses Y as the variable of integration).
Loh's approximation is substantiated by the excellent agreement he obtains
between the approximate and exact numerical solution. Loh's approximation
extended to the 3 dimensional problem is

1. M is insensitive to Y integration and therefore assumed constant.
2. g sin Y << D/in and therefore neglected.
3. V/(RO + h) cos Y sin d) ctnd << 1 and thereby neglected.

For small flight path angle approximations (which will be typically the case
for manned maneuvers) approximation 2 seems to be reasonably valid. If
large cross ranges are not covered (o small) approximation 3 seems to be
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valid. Reference 6 presents numerical evidence on conditions when
approximation 3 gives good accuracy even though the lateral range is large.

The equations of motion (5-8) using the above approximations become

^' = -CD V 2 S/2m	 (14)

Y = PV[(C LS cosµ)/2m + M1	 (15)

h = V sin 	 (16)

P V C L S sin p
(17)

2m cos y

The down range and cross range angles are not included in the following
analysis and by approximation 3 are not included in the above equations of
m otion.

IV, Transformation of State Variables

If the independent variable is changed using (15) from t to Y and if
the transformation

P 0 CLS e -71o 
^1 = h/^	 w =	 (18)

2m

u = 2 
C L In ( V /(

9g)1/2 ^ 	 (19)
Cp

given in Ref. 2 is used where w is a dimensionless altitude, u is a
*

dimensionless velocity, and C L and CD are constants defined in Section
5.1, the equations of motion, (14) - (17) become

z '	

du/dY = -2(CD /C * )/[(CL /CL) cos; t Ml	 (20)

_F • 	^ ^	

dw/dY = - sin Y /[(C T /CL) COS Al + M1	 (21)

diddY = (C L /CL) sing/[(CL /CL  cosµ+ M I cos Y	 (22)

6
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where

M = 2m M/CL S	 (23)

Note that these equations are only explicit functions of the controls (CL,
u) and the independent variable, Y . This has important consequences in
obtaining a closed form solution to the optimization problem. Note that Y
is not monotonic and care must be taken at a point of inflection, i.e. a
point where Y changes sign.

V. The Optimal Control Problem

In general the problem is to find the control histories (C L , µ) over
e	 ' Y! [YO , Yf ; urhi c h maximize the terminal function Olu(Y wf),	 (Y f),uac an^crrua	 ^..

6(Yf), Y f I subject to the dynamics (20 - 22) with specific initial conditions,
the terminal constraints

Q[ u(Yf ), w(Yd ' O(Yf ), Y fI = 0	 (24)

where ^ is at most a column three vector of constraint functions, and the
control inequality constraints

Cmin S C s Cmax	 AA
	 s µ s gm, 	 (25)L	 L	 L	 '

In the above YO and Y  are the initial and final values of Y.
Define the variational Hamiltonian as

S	 H= [ p 1 (CL /CL ) sin µ/cos Y - p 2 sin Y

2P 3 ( C D/ C D )^ /[ (CL/CL) cos ;1 M]	 (26)

and an augmented terminal function as

0 _ 0 + v Q	 (26a)

where the Lagrange multipliers (p l , P2' P3) are associated with ine
differential constraints (22), (21), (20), respectively. The Lagrange
multiplier row vector v is associated with the terminal constraints (24).

7
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The Euler-Lagrange equations are

dp l /dy = -aH /aO = 0,	 rIp2/dy = -ali/aw = 0,

dp,/dy = -aH/au = 0	 (27)

with terminal transversality conditions

p 1 (Y f ) = o ^/a y l	 p2 (yf ) = a 4)/a w!

	

Y-Yf	 y-yf

P3 (Yf ) = a 0/a uI	 H (y f ) = a 0/a ,y 	 (23)

	

Ir-yf	 ^y _,yf

Clearly, the advantage of the transformation of Ref, 2 is that the multiplier
dynamics are zero; the Lagrange multipliers are constant along the motion,

y

	

	 The optimality conditions applicable when the control variables lie
in the interior of the admissible control set are

	

a H/a C L = 0 ,	 a H/a cos P = 0
	

(29)

which reduce to

p 1 sin µ
+ p2 sin y cos µ + 2p3 (CD /CD) cos µ

-	 cos y

	

C L a C D	 a CD CL

	

-	 cos µ - ----	 Ml = 0	 (30)
	CD a C L	 a CL CD —

p 1	 cos µ M + (CL/CL)
+ p 2 sin y + 2p 3 C D /C 1)	

0	 (31)
cos Y	 sin µ

respectively.
`

	

	 These conditions can be simplified. If (31) multiplied by cosµ is
subtracted from (30), the result is

	

sin IA = p i /[2  p3 cosy (a C D /a L )(C w /C ^))	 (32)L L D

This general result relates the roll angle to the slope of the lift-drag polar.
 -ClebschIt is assumed that p3 is not zero. If p3 is zero the Laaendre 
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condition  cannot be satisfied. If (32) is substituted into (30), we have

M 2 cos y (a CD^a C L )(C L /CD ) p3] Z - p1 }
 1/2 /cos y

P2 sin y + 2p 3 [ C D - C L (a CD/^ C L )] /CD
	 (33)

Note that she multipliers can be normalized in both (32) and (33) by defining
two constants p 1 4 pl /p3 and Q, 4 p 2 /p3 . Thv functional dependence
between CL and CD must be given explicitly. While a general Newtonian
polar has been found too complex, zn elliptic polar was su -.cessfully carried
through all the analysis. 7 A simpler form will be used in the following
analysi s.

5.1	 Optimal lift coefficient for parabolic lift-drag I.olar

In Ref. 2 the form of the lift-drag polar is

CD = CD + KC n	n>1
0
	 (34)

where CD and K are constants. The analysis to follow can be carried out
0

for arbitrary n; how:?-ar, for notational convenience we consider a parabolic
polar (n = 2). For consistency with Ref. 2 the control variable used is a
quasi lift coefficient. A defined as

X , = K CL/CD 	(35)
0

The lift and drag coefficients are related to X as

CL = CL ,X , CD =1 CD (1 + ).2 )	 (36)

where

CL = (CG /K) 1/2 , CD = 2 C D	 (37)
0	 0

CL and CD are the lift and drag coefficients corresponding to the maximum
lift tc drag ratio.

Using the above parabolic polar, (33) becomes

f
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t M [ 4 cos 2 YX2 - pi ] 1/2 /cos  Y = p 2 sin Y + [ 1 - ). 2 J	 (38)

1	 from which X2 can be found as

X2 = (2 M 2 + p 2 sin y + 1)

f 2 M (M 2 + 2 2 sin y + 1 - pi/4cos2 Y)1/2	 (39)

The above carp be put into a more useful and elegant form if the term p 1 /4
cos 2 Y is added and subtracted from (39) as

X = [(-M + t) /2 ) 2 + p l / 4 cos 2Y] 1/2	 (40)

where t, i:, defined as

t = M 2 + 2 2 sin y + 1 - pi/ 4 cos 2 y	 (41)

Furthermore, (45) using a parabolic polar reduces to

sin g = p 1 /2 cos -,, X	 (42)

The analytic form of the optimal (X, g) are given in (40) and (42) in terms
of only two constants F,1 andp 2 . Evaluation of these constants will Le

discussed in the next section along with the plus or minus sign (+) in (40).
Notice that sin g in (42) is inversely proportional to X. This means

X cannot go through zero unless p l is zero. In fact, a reaches its lowest
value of p l / 2 cos y when c, 1/2 = M which occurs when g = + 90°. X is
considered to only modulate the magnitude of the lift and is assumed always
positive whereas the direction of lift is completely determined by the roll
angle.

5.2	 Evaluation --)` the Lagrange multipliers

The constants p l andp 2 are evaluated by satisfying the terminal
condition (24) and transversality conditions (28) which are evaluated by
determining the ter!.Anal state variables as a function of these constants.

6
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By introducing (40) acid (4^) into (20 - 22) and integrating we obtain the
terminal values of u, w, and 6 at Y = Y f, These seemingly complicated
integrals can be greatly reduced by the following algebraic manipulations
and observations, From (42)

cos 2A = i - sin 2µ =	 2 - p i /4 cos 2 Y]/^ 2 	(43)

Using (43) and (40) the denominator of (20 - 22) reduces to

cos µ + M	 2 - p l /4 cos 2,Y11/2 + M = f t '
l/2	 (44)

However, this reduction is not obvious because of the sign inddAterminacies
found in a and cos u. This difficulty ig	 moverrme by nntinb that in the

limit as Q1 goes to zero, (40) must reduce to the two dimensional case
found from the optimality condition (30) where p 1 = 0 and 4 = 0, i.e.

_ -M +(M 2 + 1 + P2 sinY) 1/2 	(45)

The form of (40) and (44) are chosen to be consistant with (45) and ^ + M
respectively, as the limit of the two dimensional case is approached.

The sign of t, 1/2 in (44) indicates whether Y is positive or negative.
Then if t, goes through zero, an inflection point of Y is reached (Y attains
an extreme value). At this point the sign of t1/2  changes. In the following
integrals, the interval of integration is divided at the inflection point of Y,
Y. Note YI is found by setting t equal to zero in (41). It is conjectured
that at most only one inflection point will occur.

Introducing (44) into (20 - 22) the following integrals result

YI 	 yf
u (Y f ) - u(Y O ) = 2 M Oy f - y O ) :F

S 
t 

S 
dy [ 1 + M2

YO YI

+ t' + pi /4 cos Y1 / t,1 /2	 (46)

YI Y 
w ( Yf ) - w (Y O ) _	 ^ f C dY sin Y/

^1 /2	 (47)
YO YI

 

YI

(Yf ) - + (Y O ) = f	 dy ( /2 cos 2 y t, 
1/2)	 (48)

J S ^1

YO i
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These integrals reduce to, at best, elliptic integrals which are however,
tabulated. If the flight path angle is assumed small (cosy 1, sin y ti Y),
(46 - 48) can be integrated in closed form as

u(yf ) - u ('Y O ) = ^ [{a[p 2 Yf + b] 1/2 + 1 CP Y + b]3/2}
_2	 3 —2 f

^2f 
{a [P2 YO + b] 

1 

/	 + 3 [ P2 Y 0 + b ] 3/2 }]+2M (Yf - Y 0 )	 (49)

w (Yf ) - w (Y O ) _ {[ 2p 2 yf - 4b ]CP Z yf + b ] 1/2 /3 p2

	

C 22 2 y0 - 4b][P 2 Y0 + b] 1/2 /3 P2}	 (50)

+^(yf ) - ^(Y0) 	 ±(p l /P 2 ) {CP 2 Yf+b]1/2

t	 1/2CP 2 Y0 + b]	 }	 (51)

where

a.= M2+1 +P2

(52)
b = M 2 +1 -p1/4

The + sign in front of the entire expression of the right hand side of (49 -
51) indicates whether y is increasing or decreasing at Y  . The + sign
multiplying the second term in (49 - 51) indicates whether or not an inflection
point exists. The minus sign means there is no inflection point whereas a
plus sign means an inflection point does exist. The four possible combinations
of signs may lead to four different real values of the constant 

p l' P 2' p3'and Yf for which the terminal b;^c,.;^ar conditions given by ti, constraints
(24) and the transversality conditions (28) are satisfied. The terminali
conditions are written in term s of the constants by elinjinating t'ze terminal
state variables through (49 - 51) and using the equations of (28) to eliminate
the v's. In this way four nonlinear conditions are to be satisfied by the

i
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four constants p l , p 2 , p3 and y f . Note that, in general, p 3 4 0 can be elim-
inated by normalizing p l and p 2 ; thereby, only three constants (p1, 22, Yd
need be found. This, in general, requires a numerical p rocedure but only non-
linear algebraic equations are involved and not nonlinear differential equatior.
Although four different solutions may give real values for the constants,
only one solution will be the global maxi-.num. The other solutions if they
exist will be either local maximum or extremal paths which do not satiFfy
second order necessary conditions, i.e. Legend re- Clebsch condition or the
Jacobi (conjugate point) test  fail. The global maximum, gives the best
value of 0 from all possible F lutions.

VI, Comments on Results

Let us specialize the preceding results to the problem of maximizing

the terminal velocity (minimum energy luss) subject to terminal constraints

on the altitude, flight path angle and heading angle. Sincep 3 = i for maximum

terminal velocity and Y f are given, only p1 and p^ need be found from
4

(50) and (51). Once these constants are obtained, the cptimal control
programs are obtained by(40)and (42) and the normalized terminal velocity
is given by (46). In a second example of interest the terminal heading
angle and flight path angle are s pecified, the terminal altitude is free, and
the total terminal erergv (V 2 + 2 goh) is to be maximized. In this case
the multipliers can be normalized with 23 = 1, Thep— 1 and p'2 are found so
that (51) and the transversality conditionP 2 = - g0 /V 20 	r(pl, 12 2 ) are
satisfied. The function r is obtained by characterizing V(Y f) and MYf) in

terms of p 1 and1 2 through (49) and (50).

As was noted the form of the roll angle is very general and is dependent

on d particular approximation only through its dependence on X. However,

for the first (M = 0) and second (Loh) order approximations, the form of a

changes considerably. The general form is given in (40) and reduces to

(45) for the 2-dimensional case and for both the 2- and 3-dimensional cases

to

X _ + (1 + p 2 sin Y) 1/2	 (53)

for the first order approximation. This is the form found in Ref, 2, In

13
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(53) A changes sign at the inflection point of Y. The effect of M is to reparate
the points where the inflection point occurs and ^ goes through zero and to
include the effect of p 1 on X. Similar results for the three dimensional case

although with M = 0 were independently obtained by Griffin. 8

VII. Bounded Con*,rol

Bounds can be imposed on the control variables (X, µ) without excessive

complication to the approximation. This is because control variable

constraints allow the Lagrange multipliers to remain as constants of the

motion even along the control boundary. 'I his is true if the constraint

boundaries are constants and not functions of time. However, if the roll

angle lies on its bound, the lift coefficient X determine:.: fro?n (30) alone

using a parabolic polar is

7
_ - M/cos µB f ( My	 + 1 + p 2 sin y + p l tanµBM/cos y) 1/2

cos2 µB
(54)

where µ B is µ on its bound. If is inserted into (20 - 22) equations quite
similar to (46 - 48) result. If Y is assumed small, the egl)ations can be

integrated in closed form resulting in solutions similar to (49 - 51). The

constants p l , p2' p3' Yf are determined so that the sum over constrained

and unconstrained arcs satisfy the terminal conditions (24) and (28). This

is demonstrated in Ref. 2 for the case where M and µ are zero. Note that

if M is zero µ is not a function of p 1 and thereby the terminal values of h,

Y, +^ cannot be satisfied simultaneously.

If CL lies on its bound, the roll angle control determined from (31)

alone is

cos µ	 (- M CLB f A[A 2 + M 2 - CLB 2 1 1/2) /(M 2 + A 2) (55)

where

A = 1p 2 sin -Y + 2CDB cos Y/p l	(56)

and where C LB is CL /CL on its bound
T

and CDB is C D /CD when on a CL

bound.	 If cos µ is substituted into (20 - 22), the resulting integrals for Y

14
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small are quite complicated. However, these integrals can be simplified
if the roll angle is used as the independent variable instead of flight path
angle, To do this two changes of variables are made. First the differential
relation between Y and A obtained from (55) i3 (Y is assumed small)

dY = p l dA/p 2	(57)

Furt hermore, by using (?1) and the definition of A in (56), A is related to
gas

A = [cosµ M + C LB ]/sinµ	 (58)

From thedifferential relation between A ana u obtained from (58) and using
(57) we obtain

dY = -[ p l (CLB cosµ + M)/22 sin 2 p ] u p	(59)

If 1 is eliminated in (20 - 22) byu using (56), (58) and (59), the equations
of motion become simply

du/du = 2p 1 CDB/p2 sin 2 µ	 (60)

dw/dp = p i (cos pM + CLB)/P2 sin 3 p - 2P 1 CDB/p2 sin 2;t (61)

dzb/du = -C LB 
El cscp/P2	 (62)

These equations are easily integrated in closed form. For the case of no
inflection point we have

	

A(Yf)	 1	 Yfu (Yf ) - u (YO ) _ -2(p l /p 2 ) CDB[ C(A)/S(A)] A(Y0) - f (Y) I Y (63)

w('Yf) - w(Y0 ) = (pl/2p2) [pl C LBIn [S(A)/(1 + C(A)]

	

A (Y )	 y
-

	

Ell [ M + CLB C(A)l/[S(A)1 2 + 4 CDBC(A)/S(A)} I A(Yf	`2(Y)If (64)

15
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S-	
A(Yf)	 3	 yf

(YO ) 	 -CLB (P 1 /e2 ) In (S(A)/[ 1 + C(A)] }	 = f (Y^	 (65)
A(y0 )	 Y0

where C(A)	 cosµ given by (55) and

S(A) 4 sing = [A CI_8 t M (A 2 + M 2 - CLB ) 1/2, /(M 2 + A 2) (66)

An inflection point occurs when the argument of the square root in
(55) and (66) goes to zero. That is when

	

A 2 ( y i ) = CL B - N'I 2	(67)

where Y  is the value of y at the inflection point easily calculated from
(56) and (67). If an inflection point exists the motion equations (60 - 62)
result in

[u(Yf) - u(y0 ), w(Yf ) - w(Y 0 ), 0(Yf ) - 0(y0)I

	(2 fl (YI i - [fl (yf ) + f l (y0 )],	 i = 1, 2, 3}	 (68)

where f l(y) is defined in (63 - 65). Note again that there are four possible
solutions. The constants (p l , p 2 1 p31 yf) can be found so that the sum over
the constrained and unconstrained arcs satisfy the terminal constraints
(24) and transversality conditions (28). The control variable is continuous
at the junction of constrained and unconstrained arcs.

VIII. Numerical Results

An approximate optimal path, generated using Loh 1 1- approximation
and assuming that Y is a small angle, is compared to the exact optimal
path calculated by a second order numerical optimization technique, the
sweep method. 1 The problem is to maximize the terminal velocity subject

16



to terminal constraints on altitude and flight path angle. The equations of
motion used to obtain the exact optimum are given by (5), (6) and (7) with

= 0, The wing loading, mg/S, was taken as 61,3 lb - ft Z , The 1956
ARDC Standard atmosphere model was used for the numerical path and
fitted in the region of interest as ,0018392 EXP -(3,978197 x10 -5 h) for
the approximating path, The lift-drag characteristics of the glider, shown
in Fig. 2, are used in both the numerical and approximate path, * The

K
initial conditions for the maximum terminal velocity path were taken as:

F
V = 33,961 ft/ sec, Y = -1,57 deg and h = 189, 890 ft. The terminal constraints
are h = 220, 000 ft and y = 0,

The approximate optimum solution was calculated using an update
method to include the effects of variations in M by re-evaluating M along
the approximate optimal path at given intervals of Y and then adjusting the
parameter p 2 , It is surprising that the approximation is so good given the
variation of M with velocity shown in Fig. 3, In Fig. 4 the angle-of-attack

 calculated using the above update method (dotted line) is compared^ program	 g	 I-^ P
with the angle of attack obtained using only the initial value of M (dashed
line), M = 0 (dash-dot line), and the exact optimal path (solid line), The
path obtained by the update method matches closely with the exact optimum;
whereas, when only evaluating M initially, the angle of attack of the
approximate optimal diverges from the optimum near the terminal point.
The effect of making M = 0 is to increase the angle of attack program.
Note that the existence of an inflection point for Y adds no additional
complexity in the approximation.

In Fig. 5 the angle of attack program found by u sing the update m ethod
and using M = 0 is compared with the exact o ptimum as a function of velocity.
Here, the control using the update method differes slightly from the exact
control near the inflection point for Y. However, the angle of attack for M
= 0 is considerably different everywhere, In Fig, 6 and 7, the altitude and
flight path angle are plotted against velocity showing how close the approxi-
mate path (using the update method) is to the exact path in state space.
The paths generated by M = 0 are quite different except at the extremes.

If the angle of attack, a, is related to CL as CL = CL o, then a = (C L / CL)o
*where CL is defined in eq. (37),	 0	 0

t
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The difference in the terminal velocity from the exact path is about -20
ft/sec for the update method and +80 ft/sec for the M = 0 approximation.

IX. Conclusions

For a re-entry glider over a spherical non-rotating Earth approximate
but closed form solutions are determined for the problem of ma: iinizing a
terminal function of the velocity, the heading angle, flight path angle and
altitude subject to terminal constraints on these state variable and inflight
constraints on the lift coefficient and roll angle. The work here extends
Ref. 2 by including Loh'; ad hoc second order term and generalizing the
problem to three dimensions. These generalizations are made with little
additional complexity in those cases where the small flight path angle
approximation is justified.

In two dimensions, the approximation of Ref. 2, the extension of Ref,
2 to include Loh's second order term, and a numerical optimum path are
compared. The results show that when Loh's term is included the
approximate path practically duplicates the numerical path. This is a great
improvement over the approximation of Ref, 2, Some additional numerical
work done in Ref. 9 for roll modulation only indicates that the three
dimensional approximation is also quite good.
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